### Zee-Babu model for neutrino mass and Dark Matter

Seungwon Baek (KIAS)

High1 2014, Feb. 9-15, 2014

based on 1209.1685, work in progress In collaboration with P. Ko, H. Okada, E. Senaha

### Standard Model



### Neutrino Masses

- In the SM, neutrinos are massless.
- Oscillation experiments suggest nonzero neutrino masses.

| Parameter                                          | best-fit $(\pm 1\sigma)$                                | $3\sigma$                       |
|----------------------------------------------------|---------------------------------------------------------|---------------------------------|
| $\Delta m^2_{21} \ [10^{-5} \text{ eV}^2]$         | $7.54^{+0.26}_{-0.22}$                                  | 6.99 - 8.18                     |
| $ \Delta m^2 $ [10 <sup>-3</sup> eV <sup>2</sup> ] | $2.43_{-0.10}^{+0.06} (2.42_{-0.11}^{+0.07})$           | 2.19(2.17) - 2.62(2.61)         |
| $\sin^2 \theta_{12}$                               | $0.307^{+0.018}_{-0.016}$                               | 0.259 - 0.359                   |
| $\sin^2 \theta_{23}$                               | $0.386^{+0.024}_{-0.021}$ ( $0.392^{+0.039}_{-0.022}$ ) | 0.331(0.335) - 0.637(0.663)     |
| $\sin^2 \theta_{13}$ [173]                         | $0.0241 \pm 0.0025 \ (0.0244^{+0.0023}_{-0.0025})$      | 0.0169(0.0171) - 0.0313(0.0315) |

 $\sum m_{\nu} < 0.933$  eV for Planck data only

• Why are neutrino masses so tiny?



### Dark Matter

Many evidences for the DM



### Dark Matter

- $\cdot$  27% of the universe is DM
- We do not new its nature
- None of the SM particles can be a DM candidate



68%

27%

5%

#### Neutrino masses and Dark Matter

- Neutrino and DM require New Physics beyond the SM
- Radiative generation of neutrino masses is a viable scenario and testable at colliders
- Interplay between Neutrino masses and DM

Under 
$$SU(2)_L \times U(1)_Y \times Z_2$$
, the particle content is given  
by  
 $(\nu_i, l_i) \sim (2, -1/2; +), \quad l_i^c \sim (1, 1; +), \quad N_i \sim (1, 0; -),$   
(3)  
 $(\phi^+, \phi^0) \sim (2, 1/2; +), \qquad (\eta^+, \eta^0) \sim (2, 1/2; -).$  (4)  
 $\mathcal{L}_Y = f_{ij}(\phi^-\nu_i + \bar{\phi}^0 l_i)l_j^c + h_{ij}(\nu_i\eta^0 - l_j\eta^+)N_j + \text{H.c.}$   
 $\frac{1}{2}M_iN_iN_i + \text{H.c.}$   
 $\frac{1}{2}\lambda_5(\Phi^\dagger\eta)^2 + \text{H.c.}$ 



#### Indirect Dark Matter Signal: y



## Indirect Signature: y-line

#### FermiLAT data



Bringmann, et.al, Weniger (2012)  $m_{\chi} = 129.8 \pm 2.4^{+7}_{-13} \text{ GeV}$   $\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} = (1.27 \pm 0.32^{+0.18}_{-0.28}) \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}$ ~4% of thermal relic density

• 130 GeV line from Galactic center: 3.3~6.5σ.

Other sources (Earth Limb, etc): ~3σ
 →The current situation is confusing.

#### HESS-II / GAMMA-400 to the rescue?



[Bergström et al., 2012]

#### HESS-II (hybrid mode)

- 50 hours of observation of galactic center
- enough to rule out signature or confirm it at 5 sigma (if systematics are under control)
- GC close to zenith from March 2013 on
- 230 hours per season in principle possible
- results end of 2014?

[parameters from J. Lefaucheur+ (Gamma 2012, Heidelberg)]

#### GAMMA-400

- 5 years of survey mode (5sigma detection would take ~10 months)
- Allows discrimination between VIB and monochromatic photons
- detection of γZ down to 20% relative branching ratio
- launch in 2018?

Taken from Weniger, Light Dark Matter WS (2013)

### Outline

- Introduction to Zee-Babu model for radiative neutrino mass
- Introduction of DM in Zee-Babu model
  - Z<sub>2</sub>-model
  - $\cdot$  U(1)<sub>B-L</sub> model
  - Phenomenology of DM
  - FermiLAT 130GeV gamma-line anomaly
- Conclusions

## The Zee-Babu model

 Two charged scalars h<sup>+</sup> & k<sup>++</sup>

 introduced in addition to the SM

#### Babu, PLB(1988)

• Interactions  $\mathcal{L}_Y = f_{ab}(\psi_{aL}^{Ti}C\psi_{bL}^j)\epsilon_{ij}h^+ + h'_{ab}(l_{aR}^TCl_{bR})k^{++} + \text{H.c.}$ 

 $V = \mu_1^2 \phi^{\dagger} \phi + \mu_2^2 h^+ h^- + \mu_3^2 k^{++} k^{--} + \lambda_1 (\phi^{\dagger} \phi)^2 + \lambda_2 (h^+ h^-)^2 + \lambda_3 (k^{++} k^{--})^2 + \lambda_4 (\phi^{\dagger} \phi) (h^+ h^-) + \lambda_5 (\phi^{\dagger} \phi) (k^{++} k^{--}) + \lambda_6 (h^+ h^-) (k^{++} k^{--}) + \mu (h^+ h^+ k^{--} + h^- h^- k^{++}).$ 



$$(\mathcal{M}_{\nu})_{ab} = 8 \mu f_{ac} m_c h^*_{cd} m_d f_{db} I_{cd}$$

$$m_{\nu_1} = 0$$
  

$$m_{\nu_2} = (3 \times 10^{-5}) \left[\frac{\mu}{200 \text{GeV}}\right]$$
  

$$m_{\nu_3} = (1 \times 10^{-2}) \left[\frac{\mu}{200 \text{GeV}}\right]$$

## The Zee-Babu Model

- Right-handed neutrino is NOT necessary
- Smallness of neutrino mass comes from loop-suppression factor
- Det(M)=0: one massless v
- No Dark Matter

### Z<sub>2</sub> Model

- Introduce DM X and Z<sub>2</sub>-symmetry:  $X \rightarrow -X$
- Simplest extension to incorporate DM

$$\Delta V = \frac{1}{2}\mu_X^2 X^2 + \frac{1}{4}\lambda_X X^4 + \frac{1}{2}\lambda_{HX} H^{\dagger} H X^2 + \frac{1}{2}\lambda_{Xh} X^2 h^+ h^- + \frac{1}{2}\lambda_{Xk} X^2 k^{++} k^{--}$$

The SM Higgs is a mediator between the DM X and the SM sector



### Z<sub>2</sub> Model

#### relic density, direct detection: OK, small γ-line signal



Figure 3. The contour plot of  $\Omega_{\text{DM}}h^2 = 0.1123$  (red lines) and  $\langle \sigma v \rangle_{\gamma\gamma} = 0.2 \times 10^{-27} \text{cm}^3/\text{s}$ (black lines) in the  $(\lambda_{Xh}, \lambda_{HX})$  plane for the choices  $m_{h^+}$  150, 140, 130 GeV (solid, dashed, dotted lines). For other parameters we set  $m_X = 130$  GeV,  $m_H = 125$  GeV,  $m_k = 500$  GeV,  $\lambda_{Xk} = 5$ ,  $\lambda_{Hh} = \lambda_{Hk} = 0.5$ .

### Z<sub>2</sub> Model

#### • Correlation with $H \rightarrow \gamma \gamma$



Figure 5. A contour plot for constant  $\Gamma(H \to \gamma \gamma)/\Gamma(H \to \gamma \gamma)^{\text{SM}}$  (black solid lines) and  $\Gamma(H \to Z\gamma)/\Gamma(H \to Z\gamma)^{\text{SM}}$  (black dashed lines) in the  $(\lambda_{Hh}, \lambda_{Hk})$  plane. The shaded regions are disfavored by (2.5) (blue) and by (2.7) (yellow). We set  $m_{h^+} = 130$  (150) GeV for the left (right) panel and fixed  $m_{k^{++}} = 500$  GeV.

- Add  $\phi$  with B-L charge 2
  - µ-term is replaced by B-L symmetric Chang, Keung, Pal, PRL(1988)

$$\lambda_{\mu}\varphi(k^{++}h^{-}h^{-}+k^{--}h^{+}h^{+})$$

Lindner, Schmidt, Schwetz, PLB705(2011)

• spontaneous B-L symmetry breaking  $\langle \varphi \rangle = v_{\varphi}/\sqrt{2}$  generates neutrino mass  $-\mathcal{L}_{\text{Higgs+DM}} = -\mu_{H}^{2}H^{\dagger}H + \mu_{X}^{2}X^{*}X + \mu_{h}^{2}h^{+}h^{-} + \mu_{k}^{2}k^{++}k^{--} - \mu_{\varphi}^{2}\varphi^{*}\varphi + (\mu_{\varphi X}\varphi XX + h.c.) + (\lambda_{\mu}\varphi h^{-}h^{-}k^{++} + h.c.) + \lambda_{H}(H^{\dagger}H)^{2} + \lambda_{\varphi}(\varphi^{*}\varphi)^{2} + \lambda_{X}(X^{*}X)^{2} + \lambda_{h}(h^{+}h^{-})^{2} + \lambda_{k}(k^{++}k^{--})^{2} + \lambda_{H\varphi}H^{\dagger}H\varphi^{*}\varphi + \lambda_{HX}H^{\dagger}HX^{*}X + \lambda_{Hh}H^{\dagger}Hh^{+}h^{-} + \lambda_{Hk}H^{\dagger}Hk^{++}k^{--} + \lambda_{\varphi X}\varphi^{*}\varphi X^{*}X + \lambda_{\varphi h}\varphi^{*}\varphi h^{+}h^{-} + \lambda_{\varphi k}\varphi^{*}\varphi k^{++}k^{--} + \lambda_{hk}h^{+}h^{-}k^{++}k^{--}, \quad (3.1)$ 

• Stability of DM X: remnant  $Z_2$  symmetry after  $< \phi > = v$ 

$$\phi > = v_{\phi}/\sqrt{2}$$



annihilation into the SM particles for relic density



• mass split between Re and Im part of X:  $X_R$  (DM)

 $X = \frac{X_R + iX_I}{\sqrt{2}}$ 

$$\begin{split} \mu_X^2 &= \frac{1}{2} (m_R^2 + m_I^2 - \lambda_{HX} v_H^2 - \lambda_{\varphi X} v_{\varphi}^2), \\ \mu_{\varphi X} &= \frac{m_R^2 - m_I^2}{2\sqrt{2}v_{\varphi}}, \\ \mu_h^2 &= m_{h^+}^2 - \frac{1}{2} \lambda_{Hh} v_H^2 - \frac{1}{2} \lambda_{h\varphi} v_{\varphi}^2, \\ \mu_k^2 &= m_{k^{++}}^2 - \frac{1}{2} \lambda_{Hk} v_H^2 - \frac{1}{2} \lambda_{k\varphi} v_{\varphi}^2, \end{split}$$

Total 22 parameters in the scalar potential

$$\begin{split} v_H(&\simeq 246 \; \text{GeV}), \quad v_{\varphi}, \quad m_1(&\simeq 125 \; \text{GeV}), \quad m_2, \quad \alpha_H, \\ m_R, \quad m_I, \quad m_{h^+}, \quad m_{k^{++}}, \\ \lambda_{\mu}, \quad \lambda_h, \quad \lambda_k, \quad \lambda_X, \\ \lambda_{Hh}, \quad \lambda_{Hk}, \quad \lambda_{HX}, \quad \lambda_{\varphi X}, \quad \lambda_{\varphi h}, \quad \lambda_{\varphi k}, \quad \lambda_{Xh}, \quad \lambda_{Xk}, \quad \lambda_{hk}, \end{split}$$

• Enhancement of  $X_R X_R \rightarrow \gamma \gamma$ 

$$\begin{aligned} \sigma v_{\rm rel}(X_R X_R \to \gamma \gamma) &= \frac{\alpha_{\rm em}^2}{32\pi^3 s} \left| \frac{(\sqrt{2}\mu_{\varphi X} + \lambda_{\varphi X} v_{\varphi}) v_{\varphi}}{s - m_{\phi}^2 + i m_{\phi} \Gamma_{\phi}} \sum_{i=h,k} Q_i^2 \lambda_{\varphi i} [1 - \tau_i f(\tau_i)] \right| \\ &+ \sum_{i=h,k} Q_i^2 \lambda_{Xi} [1 - \tau_i f(\tau_i)] \right|^2, \end{aligned}$$

$$\mu_{arphi X} = rac{\overline{m_R^2 - m_I^2}}{2\sqrt{2}v_arphi},$$

Resonance, large v

0.1 0.1 0.01 0.01 ov(GeV) ov(GeV) 0.001 0.001  $10^{-4}$  $10^{-4}$  $10^{-5}$ 10-5  $10^{-6}$  $10^{-6}$ 100 1000 104 105 106 100 150 200300 500 700 1000  $v_{\varphi}(\text{GeV})$  $m_2(GeV)$ 

Figure 6. Plots of  $\sigma v(X_R X_R \to \gamma \gamma)$  for  $\alpha_H = 0$  as functions of  $m_{\phi}(=m_2)$  and  $v_{\varphi}$ . We set  $m_R = 130, m_I = 2000, m_{h^+} = 300, m_{k^{++}} = 500$  (GeV),  $\lambda_{\varphi X} = -0.1, \lambda_{\varphi h} = \lambda_{\varphi k} = \lambda_{Xh} = \lambda_{Xk} = 0.1, v_{\varphi} = 1000$  (GeV) for the left panel and  $m_{\phi} = 1000$  (GeV) for the right panel. The horizontal purple line represent  $\sigma v(X_R X_R \to \gamma \gamma) = 0.04$  (pb) which can explain the Fermi/LAT gamma-line signal.



- Does X<sub>R</sub> give correct relic density,  $\Omega_{DM}h^2=0.12?$ 

•  $X_R X_R \rightarrow \alpha \alpha$  is dominant in wide region of parameter space.



- 2 m<sub>R</sub>=m<sub> $\phi$ </sub>=260GeV,  $\lambda_{\omega \chi}$ <0
- TeV scale v  $_{\phi}$  can explain FermiLAT gamma\_line: too small relic density • Need to decouple  $X_R X_R \rightarrow \gamma \gamma$ :  $m_h = m_k = 20 \text{ TeV}$
- m<sub>l</sub>=1TeV, λ's=0.01



#### Off-resonance

•  $X_R X_R \rightarrow \alpha \alpha$  cross section is too small and we need other channels for relic density:  $m_h$ =150 GeV,  $m_k$ =500 GeV

•  $m_{\phi}$ =1TeV,  $m_{I}$ =1TeV,  $\lambda$ 's=0.01



### Conclusions

- Extended Zee-Babu model for radiative neutrino mass generation to include a DM candidate X and SM singlet scalar
- Z<sub>2</sub> model is consistent with relic density and direct detection but cannot explain FermiLAT gamma-ray line
- U(1)<sub>B-L</sub>→Z<sub>2</sub>
  - Guarantees stability of DM  $X_{\mathsf{R}}$
  - Goldstone boson plays an important role in DM annihilation

•  $X_R X_R \rightarrow \gamma \gamma$  can be enhanced to explain the possible anomaly in FermiLAT gamma-ray data

#### Backups

Baek, Seungwon

#### EW scale Goldstone boson

#### Chang, Keung, Pal, PRL(1988)

